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1. Introduction. The theory of the kernel function permits us to introduce the 
invariant metric given by 

(1) dso(z) = [KQ(Z,' )(dx2 + dy2)]1'2, z x + iy, = x-iy, 

and the absolute invariant 

I a 2log Ka 
(2) Jn(z) Jo(z, 2 = K d n, Kn Ko(z, B) 

Here Q is a domain in the z-plane. Thus (1) and (2) are domain functionals possess- 
ing the following property: let Q (in the z-plane) and B (in the Z-plane) be two 
domains which can be transformed by the CT (conformal transformation) 

(3) W: Z = Z(z) 

onto each other. Then 

(4) dsQ(z) = dSB(Z) , JQ(Z, Z) = JB(Z(Z), [Z(Z)]1/2) 

(see [B.5, p. 36 (25)], [B.6], [B.8], [B.9], and also [E.1], [F.1], and [M.1]). 
In the following we shall assume that aB consists of n twice continuously dif- 

ferentiable closed curves Ox, K = 1, 2, *, n, 1 < n < 00, and the radius of curva- 
ture of every #,B is uniformly bounded. 

One can show that JB(Z, Z) has the boundary value 2gr. More exactly, let (Z,), 
v = 1, 2, ** , be a set of points converging to Q, Q E zB, and lying in the angular 
domain whose boundary lines form the angle a with the interior normal at Q, 
aHI < 7r/2. 

Then 

(5) lim JB(Zn, Zn) = 2w 
Zn -Q 

[B.5, p. 39]. 
If B is a simply connected domain, i.e., n = 1, then 

(6) JB(Z,Z)= const=2w, ZEz9B. 

In the case of n-ply connected domains, 2 < n < 00, JB(Z, Z) (in general) is not 
constant. It can be used to determine whether two domains, say Q (in the z-plane) 
and B (in the Z-plane), can be mapped conformally onto each other and, if this is 
the case, to construct the mapping function. 

Remark. The theory of the kernel function can be used in different ways for the 
numerical computation of CT's of multiply-connected domains onto canonical do- 
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mains. The procedure considered in the present paper is different from that de- 
scribed in [5, Chapter VI]. It is of interest to study under what conditions a certain 
procedure is well suited for numerical purposes. This can be determined by dis- 
cussing the application of the procedure and computing examples in detail. 

In the case of doubly-connected domains the procedure of the present paper has 
been worked out in detail by Zarankiewicz [Z.1]. A generalization of Zarankiewicz's 
considerations to the case of n > 3 is not immediate, and in the present paper we 
shall discuss the necessary modifications of the procedure in the case of n = 3. 

Every triply-connected domain can be mapped onto a domain Q bounded by 
two concentric circles, from which a circular hole is cut out. Let the radii of the 
circles with the center at z = 0 be p3 and p1, P3 > pi, and let the radius of the third 
circle with the center at z = 1 be P2, 2p2 < P3 - Pl (see Fig. 1, p. 529). pi, P2, p3 are 
the moduli of the class of domains which can be mapped conformally onto each 
other. Here p3 > 1. 

The moduli Pk are not uniquely determined by the domain, since by a linear 
transformation Q can be transformed onto a canonical domain bounded by three 
circles. These possibilities are discussed in Section 3 and a normalization of the 
mapping function is indicated, which permits us to associate the canonical domain 
in a unique manner. 

The invariant JQ(z, Z) --53Q(x, y) is an analytic function of two real variables 
x, y in U. Therefore in every closed subdomain Q' of Q (Q' C Q), Jo has only a finite 
number of critical points. Jo assumes the boundary values 27r, see [B.5]. The level 
lines Jo = const are indicated in Fig. 3, p. 533. 

It should be noted that 

KB(Z, d)-JJ( -_ ( w)- 

is an analytic function of z and v in the closed domain R. Here B is the complement 
of B. See [B.-S. 1, p. 214]. This result and (2) enable us to investigate the behavior 
of JQ(z, Z) at boundary points. 

A survey of results used is presented in Section 2 and the numerical computa- 
tion of some tools needed for our purposes is discussed in Section 3. 

In Section 4 we consider the critical points of JQ(z, Z) and JB(Z, Z); further we 
discuss how it is possible, by using these quantities, to determine the moduli 
P1, P2, P3 of Q, which is a conformal image of a given domain B. 

A remark about another procedure for CT of multiply-connected domains is 
made in Section 5. By use of the results in Sections 3 and 4, an example of a CT 
mapping B onto Q is given in Section 6. 

2. A Survey of Some Results in the Theory of the Kernel Function. Let 
v = 1, 2, * * represent a complete set of functions orthonormal in the domain 

B, i.e., 4,(z) are analytic functions satisfying the relation 

(1) If 4,(z)c,(z)d&' = = 1 for v = , 

=0 for v ,u 
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where do. is the area element and z = x + iy. If d2(z), v = 1, 2, *..,5 is complete 
for the class of square integrable functions with single-valued integrals, then 

co 

(2) KB(Z, Z) E 4(z)4), (z) 
V=1 

is independent of the choice of a complete set of orthonormal functions and is called 
the kernel function of the domain B [B.5, p. 9]. 

The expression ds, see (1.1), defines a line element of a metric which is invariant 
with respect to CT's [B.5, p. 32]. The curvature CB(Z) = -2JB(Z, Z), see (1.2), of 
this metric is a function which is invariant with respect to CT's [B.5, p. 36]. 

If we approach any boundary point P of B, the relation 

(3) lim CB(Z) = 4r 
Z-P 

holds, provided that the boundary is twice continuously differentiable at P [B.5, 
(41) p. 39]. 

CB(Z) is a real analytic function of two real variables x, y inside the domain. 
The critical sets of JB(Z, Z) are called interior distinguished sets. For simply-con- 
nected domains JB is constant in B. In the case of multiply-connected domains, the 
invariant JB is (in general) not constant (see Fig. 3, p. 533) and one can use its 
level lines and their orthogonal trajectories as a coordinate system which is in- 
variant under CT's. Determining these lines (JB = const and their orthogonal 
trajectories) and using the metric (1.1), one obtains a numerical procedure for 
carrying out a CT of a multiply-connected domain onto another, if this is possible. 
Concerning geodesics of metric (1.1), see [H.1]. 

3. Computations of Orthogonal Functions 4, for the Canonical Domain U. The 
conformal equivalence class of a domain of connectivity n (n > 2) is determined 
by 3n - 6 real numbers which are called the moduli of the domain. Two triply- 
connected domains (n = 3) may therefore be conformally mapped onto each other 
if and only if they agree in all three moduli. Hence the collection of ring domains 
with a circular hole, where the ring has the center at z = 0 and the circular hole 

Asy 

FR 1 

FIGURE 1. Tlle domain Q. 
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has the center at z = 1, forms a complete set of canonical triply-connected domains 
under CT's. Evidently, one can use as the three moduli, P1, P2, P3, the radii of the 
three circular boundary components #K, K = 1, 2, 3. See Fig. 1. 

As we mentioned before, the canonical domain to a given class of conformally 
equivalent domains is not uniquely determined. In the case of triply-connected do- 
mains there exist six canonical domains in the class. Let us assume that z = 0 is 
the center of two concentric circles /3 and /3, with radii p3 and p1, P3 > pi, and z = 1 
is the center of the third circle 32 with radius P2. Then for the radii of the circles of 
the five other canonical domains of the same class we obtain the values 

(la) (p (2) P2(2) p3(2)) = p3d P1P3(l 2a2) P3) S(P1, P2, P3) I 
P32 2 2~ / P3 + a P 

where 

(P3-P2)2 1 d- 2+c- (c(4 + C))1/2 p3d-(1 + P2) 

P2P3 ' 2 ' d(l + P2)-P3' 

(lb) (p3) P2,) p3() = ((1 - p2)/P3 , P2 (1 p2)/P1) T(pi, P2, P3) 

c) (P1(4) P2(4) p3(4)) = S(T(p1, P2, P3)) 

(1d) (P1(5), P2, P3()) = T(S(pi, P2, P3)), 

(le) (p1(6) P2(6) p3(6)) = S(T(S(pil P2 p ))) 

If a domain B in the Z-plane, Z = X + iY, bounded by three closed (twice con- 
tinuously differentiable) curves p(v), v = 1, 2, 3, is given, one can normalize the 
mapping onto Q requiring that ri, r3 and r2 go into /1, /3 and /2, respectively. 
By these requirements the mapping is normalized in a unique manner. 

Iy 

FIGURE 2. The domain B. 

Let pi and p3 be the inner and outer radii of the ring, respectively, and let P2 
be the radius of the circular hole and let /3', /32, /3~ be the three oriented circular 
boundary components (see Fig. 1). 

In this section we shall discuss the construction of a set of or-thogonal funct'ions 
with a single-valued integral for the ring domain a with a circular hole. To obtain 
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such a set, it suffices to orthogonalize the functions zn n = 0, 1, 2, * ; zm, (1 - Z)m, 
m = -2, -3, -4,* 

The first part of this procedure is the determination of the inner products of all 
of the above functions. Letting C = 33-/31 - 2 = ag and using Green's identity, 
we have 

m k m_k 
f 

ifm 
k+1 

(Z[Z)= JBZZd = 2iJCmZ k+1dz 
B ~2i1 k+ 

_ _ _ _m 2k 2 1 k + (2) = ~~2i(k + 1) 3A-01-02ZZd] 

T r 2k+ 2k2 (m )k + 1 212 
-(k + [j imk (P3 P1k) EL.. A 1+1 1 

2 

(k1 1=0 

Here and in the following 

m) =0 if n<O, (m= 1 if n = 0, 

and 

(m) m(m-1) . (m-n+1) if n>0. 
n n! 

Hence if m > 0 and n > m, then 

(n) 

Thus the infinite sum indicated above is actually a finite sum unless both m and k 
are negative. 

Further we have 

((1- Z)M, (1- z) k)=ff (1- Z)m(1 Z)kdc =2f (1 - z)m{ (_k )t] dz 

(2i(k+ 1) (1 - Z)m(1 - 2)k+1dZ] 

(k + 1) [j=max(O,k-m) (m - k + 3)( + ) 

- (m jk + 1 Pi 21+2 
- 

2k+2 

Finally we compute 

k+1 
M( _)M z)mk) = 

B( 
)Zd 2i A 1 Z)m k + 1 d 

2i(k + 1) [L3-S1- (1-2Z)mk+1dz] 

- (k 1) (-1)-[(m1 k)P3 + - ()k+2pl ]. 

Note that 
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(n)=0 if n<O. 

The next step in the construction of orthogonal functions is to order the func- 
tions zn, n = 0, 1, 2, *.*; z, (1 - z)rn, m = -2, -3, -4, **, as follows: 
1, z,2 z-2, (1- z)-2, z3, z- (1 -Z)-3* --a., a2, a3 . . and then apply the 
Gram-Schmidt orthogonalization procedure to get Pn(z) = Enl anka!k, n 1, 2,3, * 
The ank are determined recursively by 

//n n \1/2 
(5) ank = Cnk /(E EcniCnj(ai, ) )/2 

-1 j=l 

where 
n-1 i 

Cnk = aik aii(an, aj) k = 1, 2, ** ,n-1, 
i-k j=1 

Cnn = 1 . 

The {Pn(z) }, n = 1, 2, ***, then form a complete set of orthonormal functions. 
The invariant Jo is given by formula (1.2), where KQ(z, Z) = *=1 Pn(z)Pn(2) 

since all ank are real (see Fig. 3, p. 533). 
The orthogonalization of the set Zn, n = 0, 1, 2, ...; Zm, (1 - Z)m, 

m = -2,-3,-4, * 4 * over B proceeds in an analogous way (see also Section 6). 
In addition see [D-R. 1, 2]. 

4. The Construction of Coordinate Systems in Q and B Which Go Into Each 
Other by CT's. As we discussed in Section 2, the theory of the kernel function 
enables us to determine the invariant JB. Using JB, we shall map the given triply- 
connected domain B on a canonical domain Q, bounded by two concentric circles 
and a circular hole. As indicated in Section 2, we choose as the moduli the radii of 
the three boundary circumferences. We repeat that 

JO(Z, Z) = JB(W(Z), W(z))1/2 

and on the boundary JQ(z, Z) assumes a constant value, namely 27r. 
We denote segments of the level lines JQ(Z, Z) = const by j, the segments of 

orthogonal trajectories to j by p. 
At the critical points, say zx, of the invariant JQ(z, Z) it holds 

(1) JK = Jo(Z, ZK; P,) 

(2) 0= 
0 = 0. 

As we mentioned before, every triply-connected domain B, OB = rl, + P2 + r3, 

can be mapped onto a canonical domain Q. Here r K = 1, 2, 3, are three closed 
curves, each of which is homeomorphic to a circle. Q is a domain bounded by two 
concentric circles with the center at the origin and radius pi and p3, ps > pi, and a 
third circle, with the center at z = 1 and radius P2. 

Thus, if a domain B is giveD, it is known that there exists a canonical domain Q, 
and the normalized moduli P1, P2, p3 of B are uniquely determined by B. In order 
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to apply our procedure, we make some hypotheses. 
Let M. be the largest maxima of Jo(z, Z) on a(aKbK) with respect to the values of 

JQ(z, Z) for z E ou(aKb.). o-(aKbK) means the segment of the x-axis with the endpoints 
aK, bk. See Fig. 3. 

(a) We assume that in a certain segment T (to be described later) of the three- 
dimensional M1, M2, Ma-space, MK(pl, P2, P3) are continuously differentiable func- 
tions of P1, P2, P3. Further we assume that 9(M1, M2, M3)/9(Pl, P2, P3) # 0 in T. 

If B in the X, Y-plane is not symmetric* with respect to the X-axis, we make 
the following additional assumption: 

(b1) To every rg, K = 1, 2, 3, there exists one and only one pair of minimaxes 
Mx of JB at the points ZK, v = 1, 2, possessing the following property: Z., and Z.2 
can be connected by segments Sc1 and SK2 so that s,K U SK2 is homotopic to F,, and 
sKY are segments of the level line JB(Z, Z) = JB(ZCl ZKV). (We note that 
JB(ZKCl ZK1) = JB(ZK2, ZK,2).) 

The second part of the assumption will be formulated in the following, see (b2). 
Remark. A deeper mathematical investigation shows that a large part of the 

assumptions formulated as hypotheses (a), (b1) and (b2) can be rigorously proved. 
Since we do not want to become involved in too complicated considerations and 
since the numerical computation shows the validity of our assumption in all con- 
sidered cases, we formulate the above additional assumptions as hypotheses. 

Thus, suppose the domain B, aB = UK=1 rI, is given. We determine the orthog- 
onal functions 4,(Z), the invariant JB(Z, Z), its level lines (j-lines) and their orthog- 
onal trajectories (p-lines). For details see the example (Section 6). 

Y~~~~~ 

FIGURE 4. The domain B of the example. 

As the first problem we shall determine in B the images a(ABK), K = 1, 2, 3, of 
the segments of the x-axis. o-(aKbK) are segments of lines which are perpendicular to 
the level lines JQ(z, Z) = const. This property is preserved under conformal map- 
ping, and therefore the segments a(AKB,) = W(a(aXbK)) are segments of p-lines. If B 
is symmetric with respect to the X-axis (for example, see Fig. 4, p. 534), then the 

* If the boundary components of the domain B are symmetric with respect to the X-axis, our 
considerations are greatly simplified. 
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segments W(o-(aKb,)) = oT(AKBK) are the three line segments determined by the inter- 
section of B with the X-axis. If, however, B is not symmetric, then, in accordance 
with assumption (b1), there exist for rK a pair of minimaxes, say at the points ZKP, 
p = 1, 2, and the segments sK, of j-lines, which connect these points. In Q, the cor- 
responding minimaxes at Z., = W-'(ZK.) must either lie on the x-axis or be sym- 
metric with respect to the x-axis. The segments SK., 1 = 1, 2, lie in B. Let PK, be the 
points bisecting SKV (the distances being measured using the metric (1.1)). Then 
consider the two p-segments PK. through the points PKV, v = 1, 2, and orthogonal to 
SKI) V = 1, 2. It is seen that the points zK,, = W-1(ZKV), v = 1, 2, lie on the x-axis if 
and only if at least one of the boundary components /3j, 1 = 1, 2, 3, does not con- 
tain at least one of the endpoints of PK1 or PK2. Thus we make the hypothesis: 

(b2) For every K = 1, 2, 3, each of the three boundary components l3I, 1 = 1, 2, 3, 
contains at least one of the endpoints of PKi or PK2. 

Then it follows that the p-segments PK1 are the images W(a(aKb,)), K = 1, 2, 3, 
in B. 

Now we proceed to the determination of moduli PK, K = 1, 2, 3, of B. For a 
discrete set of triples pi, P2, P3 we have determined the corresponding triples of 
maxima M1, M2, M3 of JO(Z, Z) in Tables 1A, 1B, 1C. Let the maxima of JB(Z, Z) 
on the segments W(ao(aKbK)) be MK, K = 1, 2, 3. We determine four triples MK (P) 

v = 1, 2, 3, 4, from our tables so that {MK(O) } is an interior point of the tetrahedron 
T, with vertices at the points {M1(p), M2 (p) M3(V)}, v = 1, 2, 3, 4. We choose T to 
be the domain mentioned in hypothesis (a), p. 534. 

Thus by a well-known result, see [0.1, Theorem 25.1 and Section 26], the values 
IpK(O) I corresponding to {MK (0) } can be computed by the Newton-Raphson method. 

We determine the level lines jI = [Jn(z, z) JU(z, z; P1(?), P2(?), P3(?)) = const] 
and their orthogonal trajectories PQ = W-'(PB). We choose the trajectories pQ so 
that the (noneuclidean) distance of the line pQ = W-'(PB) from the segments 
a(aKbK) of the x-axis (or from the minimaxes ZKI) is the same as the (noneuclidean) 
distance between PB and W(o-(aKbK)) (or from Z., = W(zKP)). Then the (curvilinear) 

TABLE 1A 
Tables of maximum triples M1, M2, M3 corresponding to moduli Pi, P2, P3 

P3 = 1.5 
P2 

P1 1/8 1/4 3/8 1/2 

30.0 28.5 23.0 17.5 
1/8 25.0 23.9 22.0 18.7 

15.8 8.5 6.4 2ir 

25.2 17.5 13.0 8.8 
1/4 15.3 14.8 13.8 12.0 

15.5 8.4 6.4 2ir 

21.4 13.0 7.8 6.3 
3/8 11.6 11.3 10.6 9.1 

15.3 8.2 6.3 27r 

16.8 8.6 6.3 2ir 
1/2 9.3 9.0 8.4 6.8 

14.7 8.0 6.3 2ir 
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TABLE 1B 
P3 = 2.0 

P2 

P1 \ 1/8 1/4 3/8 1/2 

47.3 37.3 28.1 20.2 
1/8 30.9 29.5 27.0 23.5 

25.5 15.0 10.5 7.8 

36.0 22.8 15.1 10.1 
1/4 18.4 17.8 16.6 14.9 

25.0 14.8 10.4 7.7 

27.4 15.2 9.1 6.3 
3/8 13.9 13.5 12.7 11.5 

24.0 14.3 10.1 7.5 

20.2 9.9 6.3 2ir 
1/2 11.4 11.1 10.4 9.1 

22.4 13.6 9.6 7.2 

TABLE 1C 

P2 
P3= 3.0 

P1 1/8 1/4 3/8 1/2 

72.1 45.4 31.6 22.0 
1/8 42.9 40.1 35.7 29.8 

39.4 22.6 16.6 13.1 

45.2 25.7 16.4 10.8 
1/4 24.6 23.6 21.8 19.3 

37.5 21.9 16.2 12.8 

31.4 16.6 9.7 6.3 
3/8 18.3 17.7 16.5 14.8 

34.3 20.7 15.4 12.3 

22.1 10.6 6.3 2r 
1/2 15.0 14.5 13.6 11.9 

29.9 18.9 14.2 11.2 

coordinate system (jQ, pQ) goes by the CT W into the system (jB, PB). 

5. A Remark About Another Method for Construction of a CT, Mapping a Do- 
main B onto G. Making several additional assumptions in Section 4 (which have 
not been proved), we described a procedure how to determine the image (in B) of 
a segment of the x-axis (in Q). Using this result, we then determine the function 
Z = w(z), mapping Q onto B. 

It should be noted that, making much weaker assumptions and using deeper 
mathematical results, one can determine the mapping functions w(z). The method 
requires procedures which are constructive, but which are from the numerical point 
of view more difficult than those used in Section 4. 
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In the following we shall indicate the basic idea of this (numerically more dif- 
ficult) procedure. 

(1) We assume that there exists at least one maximum set of JB(Z, ) which is a 
point and lies in B. Suppose that among the maximum points there exists only 
one point z = t for which JB(t, 1) = Jo and at all other maxima points JB(Z, Z) # JO. 
If two triply-connected domains, say B and G, can be mapped onto each other and 
each of them has one point maximum at t and T, respectively, then JB(t, 1) = 

JG(T, T). In this way we obtain a necessary condition in order that B can be 
mapped onto G. To obtain a sufficient condition and the desired mapping function, 
we determine the representative domains R(B, t) and R(G, T) (see [B.4, p. 27 ff.]). 
In accordance with results of [B.4, pp. 31, 32], two representative domains R(B, t) 
and R(G, T) can be mapped onto each other only by a linear transformation 

(1) W=alw+a2, 

where ak are complex constants, i.e., by translation, rotation and dilatation around 
the center. Thus if the domains R(B, t) and R1(G, T) are constructed, one can recog- 
nize whether a mapping of the form (1) maps the domain R(B, t) onto R(G, T). 

6. An Example of an Application of the Procedure of Sections 3 and 4. Using 
the results of the previous sections, we now determine the CT of a domain B onto 
a canonical domain Q. We take for B the symmetric domain bounded by a circle 
of radius r3 and a square of width 2r, centered at z = 0, and the circle of radius r2 
centered at z = 1. Here r3 > ri + 2r2, and the axis of symmetry lies on the x-axis 
(see Fig. 4). 

First we compute a complete set of orthogonal functions for B, from which we 
determine the kernel function KB and the invariant JB of B. Then we choose the 
largest maxima M, = JB(ZP, 2,) at the points Z, located on the segments (A,, B,) 
of the x-axis. Thus, using the procedure described above, we determine the moduli 
of B. Letting Q denote the canonical domain described above with these moduli, 
and using JB JQ, dSB, and dso, we can then construct the CT from B onto Q. 

First we shall discuss the construction of a set of orthogonal functions with a 
single-valued integral for the domain B. It suffices to orthogonalize the functions 
Zn n = O, 1 2, ... ; Zm, (1 - Z)m, m = -2, -3, -4 Letting 
C = F3- F- J2 = aB (see Fig. 4) and, using Green's identity, we have 

(Zm, zk) z f zZk d_ = -. f m k+i dZ= 1 f zmZk+ldZl 
= | 2-iXZ k + 1 dZ 2i(k + 1) r3-rl-2 

(1) = ____ Fk + 1) [^ 2k+2 _ k + 1 )r21+21 
- (k+1) mkr3+ - A + r2j + amk, 

where 
___ 

= { k +I ( 2k+m+5 m+k+2 (m + k + 1 (k + 1 
amk = k+1ri sin 2 r/L\ 

X (-/2) sin ((m ++ + j)r/4)} 

X> + cos (m - k) 72 + i sin (m -k) 7rJ 
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We now determine 

(-Z)m, Zk) (1Z) Zkl1 [f (- mZk+1 
((1- ) =2i 1 )k + 1 2i(k + 1) lra-rl-r2 ) 

(2 ) 1r 1 (_ 1 ) (~ k)r3 + bmk, 

where 

bmk= (E )&(-l)jajk , if ri < 

Similarly, for the determination of ((1 - Z)m, (1- Z)k) we have 

((1- Z)m, (1- Z) k) = m2(k _ 1) [1r (1 Z)(1 z)k+dZ] 

(3) = k + 1 jmax(O,k-m) (m - + )p32(k+1) 

- bmkP2 2] + Cmk 

where 

comr 
r 

(m'\(k ?\1 Cmk = E (-1) o t C a(rt ), if ri <-'2 

In order to construct orthogonal functions, we order the functions Zn, 
n = ,1, 2, *.. ; Zm, (1 - Z)m = -2, -3, -4, ... as follows: 1 Z, Z2, Z-2, 

(1- Z)-2, Z3, Z-3, (1 - Z)-3, = a, a2, a3, ... and then apply the Gram- 
Schmidt procedure to get 

n 
Pn(Z)= ankk, n = 1,2, 3,*. 

k=1 

The ank are determined recursively by 
n n \1/2 

ank = Cnk/ (S E cnAi(i, ai) 
i=--l j=l1 

where 

Cnk = : - ai kt ij(a, aj)) k = 1, 2, * n-1 
i=-k j=l 

C.. = 1 . 

The {Pn(Z) }, n = 1, 2, *, then form a complete set of orthonormal functions. 
The invariant JB is thus given by the formula (1.2), namely, 

JB(Z,Z) = K K-!/K3 

and the invariant line element is given by dsB2 = KBIdZ 2, where 

co 

KB 5KB(Z, Z= ,P(Z)Pn(Z) . n=1 
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We now choose the particular values ri = 3/16, r2 = 1/4 and r3 = 2 for the 
domain B. Evaluating JB according to the above formulae, we determine that the 
desired triple of maxima (M1, M2, M3) is in this case 

(M1, M2, M3) (25.3, 19.6, 15.0). 

Then, by interpolation of the values in the tables at the end of Section 4 and ac- 
cording to the method discussed there, we obtain as the triple of moduli for B 

(Pl, P2, P3) (.22, 4, 2). 

Thus B can be mapped onto the canonical domain Q of circular radii pi = .22, 
P2 = 4, p3 = 2. See Fig. 1. We choose in both cases the point where JB = J= 25.3 
as the origin. 

We now determine the CT W-1 from B onto U. For this purpose we compute the 
level lines of JB and Jo, see- Figs. 5 and 6. Some representative level lines of JB are 
depicted in Fig. 5 and the corresponding curves for JQ are shown in Fig. 6. (In each 
case these level lines j are the curves intersecting the x-axis orthogonally.) 

The next step in the construction of the CT W is the determination of some 
representative p-curves orthogonal to the level lines of JB and Jo. These curves are 
selected by measuring prescribed invariant lengths along certain of the level lines j 
by the metric (1.1) and forming the curves orthogonal to these level lines at the 
prescribed points. Thus with the aid of the dsB line element we determine some 
representative "orthogonal" curves for B, as shown in Fig. 5; and in Fig. 6 are de- 
picted the corresponding "orthogonal" curves for Q obtained by use of the dsa line 
element. In each case these "orthogonal" curves are those intersecting the bound- 
aries of B and U. In such a way we obtain two systems of intersecting curves, one 
for B and one for Q, and the correspondence of the points in these two frameworks 
represents the desired CT W. 
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